Detecting inpatient falls by using natural language processing of electronic medical records
نویسنده
چکیده
BACKGROUND Incident reporting is the most common method for detecting adverse events in a hospital. However, under-reporting or non-reporting and delay in submission of reports are problems that prevent early detection of serious adverse events. The aim of this study was to determine whether it is possible to promptly detect serious injuries after inpatient falls by using a natural language processing method and to determine which data source is the most suitable for this purpose. METHODS We tried to detect adverse events from narrative text data of electronic medical records by using a natural language processing method. We made syntactic category decision rules to detect inpatient falls from text data in electronic medical records. We compared how often the true fall events were recorded in various sources of data including progress notes, discharge summaries, image order entries and incident reports. We applied the rules to these data sources and compared F-measures to detect falls between these data sources with reference to the results of a manual chart review. The lag time between event occurrence and data submission and the degree of injury were compared. RESULTS We made 170 syntactic rules to detect inpatient falls by using a natural language processing method. Information on true fall events was most frequently recorded in progress notes (100%), incident reports (65.0%) and image order entries (12.5%). However, F-measure to detect falls using the rules was poor when using progress notes (0.12) and discharge summaries (0.24) compared with that when using incident reports (1.00) and image order entries (0.91). Since the results suggested that incident reports and image order entries were possible data sources for prompt detection of serious falls, we focused on a comparison of falls found by incident reports and image order entries. Injury caused by falls found by image order entries was significantly more severe than falls detected by incident reports (p<0.001), and the lag time between falls and submission of data to the hospital information system was significantly shorter in image order entries than in incident reports (p<0.001). CONCLUSIONS By using natural language processing of text data from image order entries, we could detect injurious falls within a shorter time than that by using incident reports. Concomitant use of this method might improve the shortcomings of an incident reporting system such as under-reporting or non-reporting and delayed submission of data on incidents.
منابع مشابه
Electronic medical records for clinical research: application to the identification of heart failure.
OBJECTIVE To identify patients with heart failure (HF) by using language contained in the electronic medical record (EMR). METHODS We validated 2 methods of identifying HF through the EMR, which offers transcription of clinical notes within 24 hours or less of the encounter. The first method was natural language processing (NLP) of the EMR text. The second method was predictive modeling based...
متن کاملResearch Paper: Automated Detection of Adverse Events Using Natural Language Processing of Discharge Summaries
OBJECTIVE To determine whether natural language processing (NLP) can effectively detect adverse events defined in the New York Patient Occurrence Reporting and Tracking System (NYPORTS) using discharge summaries. DESIGN An adverse event detection system for discharge summaries using the NLP system MedLEE was constructed to identify 45 NYPORTS event types. The system was first applied to a ran...
متن کاملAnalyzing Differences between Chinese and English Clinical Text: A Cross-Institution Comparison of Discharge Summaries in Two Languages
Worldwide adoption of Electronic Medical Records (EMRs) databases in health care have generated an unprecedented amount of clinical data available electronically. There has been an increasing trend in US and western institutions towards collaborating with China on medical research using EMR data. However, few studies have investigated characteristics of EMR data in China and their differences w...
متن کاملA Systematic Approach for Automatically Generating Derivational Variants in Lexical Tools Based on theSPECIALIST Lexicon
1. Introduction The demand for natural language processing (NLP) in medicine has grown significantly in recent years. This growth is expected to increase rapidly due to the continuing adoption of electronic medical records (EMRs). Medical language processing (MLP) seeks to analyze linguistic patterns found not only in electronic medical records, but also in published biomedical research, clinic...
متن کاملAutomation of a problem list using natural language processing
BACKGROUND The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2012